Journal of Fluorine Chemistry, 37 (1987) 253-258

Received: April 13, 1987; accepted: May 27, 1987

FERRICENIUM HEXAFLUOROMOLYBDATE(V) -TUNGSTATE(V) AND -URANATE (V) PREPARATION AND ELECTROCHEMICAL IDENTIFICATION

K. MOOCK, L. TUROWSKY and K. SEPPELT

Institut für Anorganische und Analytische Chemie der Freien Universität Berlin, Fabeckstr. 34-36, D-1000 Berlin 33 (F.R.G.)

SUMMARY

Ferrocene is oxidized by molybdenum,tungsten or uranium hexafluoride in Freon 11 to give ferricenium hexafluoromolybdate(V) -tungstate(V) and -uranate(V), which were identified by electrochemical methods. A previously unknown reduction process of uranium, $UF_6^-/U^{1\,V}$ at -2.38V <u>vs</u> S.C.E. has been observed.

INTRODUCTION

Ferrocene, $Fe(C_5H_5)_2$, has been oxidized in aqueous media by various metal systems, for example Fe¹¹¹ [1], Cu¹¹ [2], Ag¹ [3], to give blue ferricenium salts of the form $[Fe(C_5H_5)_2]^+ X^-$. The redox potential of the process $Fe(C_5H_5)_2/[Fe(C_5H_5)_2]^+$ has been the subject of extensive studies in aqueous and non-aqueous solutions [4]. More recently the stability and reversibility of this redox couple has enabled its use as an internal reference in electrochemical studies of other redox systems, such as hexafluorometallates [5] and hexachlorometallates [6]. The redox couples MF_6/MF_6^- , M = Mo, W, and U have been studied previously by cyclic voltammetry in acetonitrile [7] and with the help of an external Ag°/Ag' reference electrode [8]. We now report that the oxidizing abilities of molybdenum, tungsten and uranium hexafluorides can be used to prepare stable ferricenium salts, which can be identified by the known redox couples of the hexafluorometallates and the ferricenium cation.

0022-1139/87/\$3.50

© Elsevier Sequoia/Printed in The Netherlands

RESULTS AND DISCUSSION

Addition of molybdenum, tungsten and uranium hexafluoride to a frozen solution of ferrocene in CFCl₃ results, upon subsequent warming, in the formation of dark blue ferricenium salts of the form $[Fe(C_5H_5)_2]^+[MF_6]^-$, M = Mo, W, and U. The infrared spectra of the new salts are consistent with the presence of octahedral MF₆⁻ anions and ferricenium cations. The strong band ν_3 for MoF₆⁻ is observed at 600 cm⁻¹, for WF₆⁻ ν_3 is at 599 cm⁻¹ and ν_3 for UF₆⁻ occurs at 511 cm⁻¹. The bands are assigned by analogy with previously reported MF₆⁻ salts [9]. Table 1 summarizes the i.r. data; frequency assignments are made by comparison with other ferricenium cations [10].

TABLE 1

The i.r. spectra (cm^{-1}) of $[Fe(C_5H_5)_2][MF_6]$, M = Mo, W and U

MoF6 -		WF6 -		UF6 -		Assignment [10]
3106	(m)	3114	(m)	3110	(s)	CH stretching
		2918	(w)	2923	(m)	
1524	(w)					
1415	(m)	1417	(m)	1417	(s)	antisym C-C stretching
1197	(m)			1198	(m)	CH bending ()
1123	(vw)			1125	(w)	
1105	(s)	1105	(w)	1106	(w)	CH bending ()
		1024	(s)			
1000	(s)	1001	(s)	1001	(m)	CH bending ()
972	(s)	976	(m)	971	(m)	
933	(s)					
854	(s)	858	(s)	858	(s)	CH bending (⊥)
738	(s)			740	(w)	
		702	(m)		• •	
		641	(s)			
601	(vs)	599	(vs)	511	(vs)	v3 MF6 -
490	(s)	494	(w)			antisym. ring tilt
				440	(m,br)	
420	(m)	420	(m, s h)			antisym. ring-metal- stretching

vw = very weak, w = weak, m = medium, s = strong, vs = very strong, br = broad, sh = shoulder

254

Raman spectra of the ferricenium compounds could not be obtained due to decomposition of the intensely coloured samples by the laser light. NMR spectra could not be obtained due to the paramagnetism of the complex salts. Mass spectra for all three compounds show the MF_5^+ and the $[Fe(C_5H_5)_2]^+$ ion. Molecular ion peaks were not observed.

The electrochemistry of the ferricenium salts has been investigated by direct current (d.c.) and alternating current (a.c.) methods using the ferrocene/ferricenium redox couple as internal reference. The measured potentials of the redox couples (\underline{vs} S.C.E.) were found to be independent of the choice of CH₂Cl₂ or MeCN as solvent and are consistent with previously reported voltammetric studies. For all three MF₆- compounds the one electron oxidation to MF₆ has been observed; the quasi-reversible half-wave potential of UF₆-/UF₆ occurs at +2.76 [8], MoF₆-/MoF₆ at +2.08V [7,8], and WF₆-/WF₆ at +1.08V [7,8]. One electron reduction to the metal IV occurs for MoF₆-/MoF₆²⁻ at <u>ca</u>. +0.1V [7,8] and for WF₆-/W^{IV} at -0.91V [7,8].

TABLE 2

Half-wave potentials, E [V] \underline{vs} S.C.E.* of $[Fe(C_5H_5)_2][MF_6]$, M = Mo, W, U.

	REDOX COUPLE									
Metal	<u>v/vi</u>	V/IV	IV/III	solvent	electrolyte					
Mo	+2.08 (160)	ca.+0.1* (100)	-1.95	MeCN	0.1M[Et4N][PF6]					
W	+1.08 (180)	-0.91 (220)		$CH_2 Cl_2$	0.5M[Bu4N][PF6]					
U	+2.76 (400)	-2.38		MeCN	0.1M[Et4N][PF6]					

* Obscured by Fe(C₅H₅)₂/[Fe(C₅H₅)₂]* couple

* Half-width (mV) in parentheses. Criterion for reversible (a.c.)

The corresponding reduction of the uranium complex $UF_6^-/U^{1\,v}$ at a strongly reducing potential of -2.38V appears to be observed here for the first time. Only the molybdenum complex has a second reduction: $MOF_6^{2-}/MO^{1\,1\,1}$ at -1.95V [7].

In this study the half-wave potentials of the ferrocene/ ferricenium couple has been established at +0.16V <u>vs</u> S.C.E. Table 2 lists the electrochemical date for the ferricenium salts with potentials generally given as obtained in the (a.c.) mode.

The observed redox potentials are in agreement with the spontaneous chemical reduction of the hexafluorides by ferrocene, equation 1. Further reduction of the hexafluorometallates or oxidation of the ferricenium (e.q. equation 2,3 and 4) are clearly not thermodynamically feasible.

Fe(C5H5)2	+	MF6		[Fe(C ₅ H ₅) ₂] ⁺ [MF ₆] ⁻	(1)
2Fe(C ₅ H ₅) ₂	+	MF6	_//>	[Fe(C ₅ H ₅) ₂] ₂ + [MF ₆] ² -	(2)
Fe(C5H5)2	+	MF ₆	—	[Fe(C ₅ H ₅) ₂] ²⁺ [MF ₆] ²⁻	(3)
Fe(C5H5)2	+	2MF6	-#->	[Fe(C ₅ H ₅) ₂] ²⁺ [MF ₆] ₂ -	(4)

(M = Mo, W, U)

All three ferricenium salts were subjected to vacuum pyrolysis at 200°C and to chemical reduction with aqueous $Na_2 S_2 O_3$. In both cases only ferrocene could be isolated. There was no evidence that fluorination of the C₅H₅ ligands had occured. A previous report on the synthesis of monofluoroferrocene has since been questioned [12].

EXPERIMENTAL

Conventional vacuum line and glove box techniques were used throughout. Glass systems were flamed out prior to use.

Volatile fluorides, MoF₆ (Ozark-Mahoning), WF₆ (Ozark-Mahoning), and UF₆ (Hoechst AG), were purified using a published procedure [9]. Ferrocene was sublimed and recrystallised before use. Freon 11 (Hoechst AG) and $CH_2 Cl_2$ (Merck, analytical grade) were dried by distilling from $P_2 O_3$ under argon and stored over activated 3A molecular sieves. MeCN (Merck, analytical grade) was purified and dried as previously described [13].

256

I.r. spectra were recorded on a Perkin Elmer 883 spectrometer, the samples analysed as KBr discs. Mass spectra were obtained on a Varian MAT 711, 80 eV, observed intensities include all isotopes on the basis of ⁵⁶Fe. Microanalyses were performed by Beller, Göttingen,F.R.G.

Electrochemical measurements were made with a PAR model 173 potentiostat in combination with a PAR model 124A Lock-in amplifier and a universal programmer (F.U. Berlin). Voltammograms were recorded on a Linseis LY 18100 X-Y-Y recorder. Electrochemical experiments were conducted as previously described [14].

<u>Preparation of Ferricenium hexafluorometallates(V),</u> [$Fe(C_{5}H_{5})_{2}$][MF₆], M = Mo, W, U

5.4 Mmol metal hexafluoride, MoF_6 , WF_6 or UF_6 , was added to a frozen solution of 5.4 mmol ferrocene in 20 ml Freon 11 followed by the condensation of another small amount (5ml) Freon 11 onto the frozen mixture. On warming to room temperature a blue-grey precipitate formed at once and the mixture was stirred for about 15 minutes. Removal of all volatile material left the products as dark blue solids in quantitative yield. The air and moisture sensitive salts all have melting points above $300^{\circ}C$.

Analysis:Found C, 29.56; H, 2.89; F, 28.4; Fe, 14.17; Mo, 23.9. [Fe(C₅H₅)₂][MoF₆] req. C, 30.32; H, 2.53; F, 28.8; Fe, 14.11; Mo, 24.24%. Found C, 25.08; H, 2.39; F, 22.7; Fe, 11.0; W, 38.8 [Fe(C₅H₅)₂][WF₆] req. C, 24.81; H, 2.07; F, 23.57; Fe, 11.55; W, 38.0%.Found C, 19.78; H, 1.77; F, 24.1; Fe, 11.92; U, 41.5. [Fe(C₅H₅)₂][UF₆] req. C, 22.31; H, 1.86; F, 21.19; Fe,10.38; U, 44.25%.

Mass spectra: calcd. for $C_{10}H_{10}F_6$ FeMo m/e 395.78, found m/e 193 (MF₅⁺, 4.3%), 186 (FeC₁₀H₁₀⁺, 100), 185 (FeC₁₀H₉⁺, 2.4), 184 (FeC₁₀H₈⁺, 9.5), 121 (FeC₅H₅⁺, 38), 56 (Fe⁺, 14.3). calcd. for $C_{10}H_{10}F_6$ FeW m/e 483.69, found m/e 279 (WF₅⁺, 5.9%), 260 (WF₄⁺, 6.5),241 (WF₃⁺, 1.2), 222 (WF₂⁺, 1.0), 186 (FeC₁₀H₁₀⁺, 100), 185 (FeC₁₀H₉⁺, 3,0), 184 (FeC₁₀H₈⁺, 9.2), 121 (FeC₅H₅⁺, 35), 56 (Fe⁺, 11.2). calcd. for $C_{10}H_{10}F_6$ FeU m/e 537.87, found m/e 333 (UF₅⁺, 0.4%), 186 (FeC₁₀H₁₀⁺, 100), 185 (FeC₁₀H₉⁺, 2.1), 184 (FeC₁₀H₈⁺, 8.4), 121 (FeC₅H₅⁺, 16.5), 56 (Fe⁺, 5.5).

ACKNOWLEDGEMENTS

We would like to thank Prof. Plieth and A. Felske, Freie Universität Berlin for the use of their apparatus.

REFERENCES

- 1 A.N. Nesmejanow, E.G. Perewalowa, L.P. Jurjewa, Chem. Ber., <u>93</u>, (1960) 2729; G. Wilkinson, M. Rosenblum, M.C. Whiting, and R.B. Woodward, J. Am. Chem.Soc., <u>74</u>, (1952) 2125.
- 2 B. Kratochvil and P.F. Quirk, Anal. Chem. <u>42</u>, (1970) 492.
- 3 A.L.J. Beckwith and R.J. Leydon, Aust. J. Chem., <u>19</u>, (1966) 1381; P. Bergmann and C. Lorenz, Z. Chem., <u>12</u>, (1972) 138.
- 4 Gmelin, Handbuch der Anorg. Chem., Fe-Organische Verbindungen A 1, Springer, Berlin, 8th edn., 1974, Ch. 2.5.5., p. 102.
- 5 G. A. Heath, G.T. Hefter, T.W. Boyle, C.D. Desjardin, and D.W.A. Sharp, J. Fluorine Chem., <u>11</u>, (1978) 399.
- 6 G.A. Heath, K.H. Moock, D.W.A. Sharp, and L.J. Yellowlees, J. Chem. Soc., Chem. Commun., (1985) 1503.
- 7 A.K. Sengupta, D.W.A. Sharp, G.A. Heath, and S. Brownstein, J. Fluorine Chem., <u>21</u>, (1982) 38.
- 8 G.M. Anderson, J. Iqbal, D.W.A. Sharp, J.M. Winfield, J.H. Cameron, and A.G. McLeod, J. Fluorine Chem., <u>24</u>, (1984) 303.
- 9 J. Shamir and J.G. Malm, J. Inorg. Nucl. Chem., Suppl., (1976) 107. G.M. Anderson and J.M. Winfield, J. Chem. Soc. Dalton Trans., (1986) 337.
- 10 I. Pavlik and J. Klikorka, Collect. Czech. Chem. Commun., <u>30</u>, (1965) 664.
- 11 D.E. Smith, Electroanal. Chem., <u>1</u>, (1966) 1.
- 12 F.L. Hedberg and H. Rosenberg, J. Organomet. Chem., <u>28</u>, (1971) C14; J.H.J. Peet and B.W. Rockett, ibid., <u>82</u>, (1974) C57.
- 13 J.M. Winfield, J. Fluorine Chem., 25, (1984) 91.
- 14 G.A. Heath, K.H. Moock, D.W.A. Sharp, and L.J. Yellowlees, in preparation.

258